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A fast Fourier transform algorithm is introduced into the method recently

defined for calculating powder diffraction patterns by means of the Debye

scattering equation (DSE) [Thomas (2010). Acta Cryst. A66, 64–77]. For this

purpose, conventionally used histograms of interatomic distances are replaced

by compound transmittance functions. These may be Fourier transformed to

partial diffraction patterns, which sum to give the complete diffraction pattern.

They also lead to an alternative analytical expression for the DSE sum, which

reveals its convergence behaviour. A means of embedding the DSE approach

within the reciprocal-lattice–structure-factor method is indicated, with inter-

polation methods for deriving the peak profiles of nanocrystalline materials

outlined. Efficient calculation of transmittance functions for larger crystallites

requires the Patterson group symmetry of the crystals to be taken into account,

as shown for �- and �-quartz. The capability of the transmittance functions to

accommodate stacking disorder is demonstrated by reference to kaolinite, with a

fully analytical treatment of disorder described. Areas of future work brought

about by these developments are discussed, specifically the handling of

anisotropic atomic displacement parameters, inverse Fourier transformation

and the incorporation of instrumental (diffractometer) parameters.

1. Introduction

There has been a resurgence of interest in the application of

the Debye scattering equation (DSE) [equation (1)]1 to

powder diffraction in the past 20 years,

IDebyeðQÞ ¼
X

m

X
n

fm fn

sinðQ rmnÞ

Q rmn

: ð1Þ

This has been stimulated by the steady growth both in

computing power and in the technological importance of

nanomaterials.

The mathematical connection between the DSE and the fast

Fourier transform (FFT) was first exploited by Hall & Monot

(1991), who outlined an FFT-based procedure for large clus-

ters based on two key elements: (a) the discretization of

interatomic distances in the form of a histogram (R = j�R; j =

1, N); (b) interpolation of the discrete points in Q space

generated by the FFT. The use of FFT methods in connection

with the DSE was taken up again by Cervellino et al. (2006),

who introduced a broadening function, such as a Gaussian,

which could be convoluted with the interatomic distance

histograms in order to generate a continuous function for

Fourier transformation. The latter function could be sampled

with a significantly higher sample width, �R, leading to

significant reductions in computer time for the FFT operation.

Furthermore, the influence of the broadening function on the

diffraction pattern could be corrected for by means of multi-

plying factors, which were applied to the Fourier transform at

discrete points in Q space. The parameterization of the

broadening functions also permitted the level of accuracy of

the calculations to be traded off against computer time. This

enabled the aim of very fast calculations for nanoclusters to be

realized, such as might be required in least-squares mini-

mization procedures. Attention was also given to the possible

use of Chebyshev polynomials as a more efficient alternative

to the FFT. The innovative methods of these authors have,

since then, matured into the computer package called

DEBUSSY (Cervellino et al., 2010). As an alternative, hard-

ware-led approach towards optimizing DSE calculations, by

comparison, Gelisio et al. (2010) have demonstrated the

potential of graphics processing units (GPU) compared to

central processing units (CPU). A further focus of activity in

connection with the DSE concerns its ability to model particle

size distributions (Beyerlein et al., 2009).

An independent contribution towards this growing DSE

effort was made by Thomas (2010), who sought to extend the

use of the DSE to larger crystallites, such as might occur for

clay minerals such as kaolinite. Furthermore, the capability of

1 IDebye(Q) is the intensity of radiation scattered in a direction at an angle of 2�
to the incident beam, whereby Q ¼ ð4� sin �Þ=�. The double summation is
carried out over all atoms m and n within a single crystallite, with fm and fn

atomic scattering factors.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5044&bbid=BB17


treating more complex chemical compositions was seen as

desirable. The fundamental method for optimizing computa-

tional speed here presupposed the existence of perfect crys-

tallinity, although point defects and stacking faults could also

be accommodated. The central method employed was to split

each vector linking pairs of atoms within the generating crystal

into two parts, i.e. a lattice vector and a Patterson vector.

Thereafter the frequencies of occurrence of the different

lattice vectors Nðnx; ny; nzÞ could be expressed as a function of

crystallite size and shape, by means of the parameters Lx, Ly,

Lz, the number of unit cells in the x, y and z directions

[equation (2)]:

Nðnx; ny; nzÞ ¼
1

Nuc Vuc

� � 1�
nx

�� ��
Lx

� �
1�

ny

�� ��
Ly

� �
1�

nz

�� ��
Lz

� �
:

ð2Þ

Here 0 � |nx| < Lx, 0 � |ny| < Ly and 0 � nz < Lz. The factor

1=½Nuc Vuc�, with Nuc the number of atoms in the unit cell and

Vuc its unit volume, serves to express the calculated intensities

in units per atom.

In common with the work of other authors, a histogram

representation of interatomic distances was used, in this case

with a fixed sample width, �r, of 0.01 Å. The DSE sum was

evaluated from histograms of different atom-pair types at

discrete, closely spaced Q values by calculating factors

psj½sinðQj�rÞ=Qj�r� directly (s, pair type; j, bin index; psj, bin

occupancy). This method was also used as a benchmarking

exercise by Hall & Monot (1991) and by Cervellino et al.

(2006), in order to monitor the comparative performance of

FFT procedures.

Although the aim was reached in the earlier article

(Thomas, 2010) of applying the DSE to crystallites of length

up to 200 nm on a conventional personal computer, there are

several points at which improvements in method are called for,

in order to benefit computational speed. First, as is well

known, the explicit, histogram-based sum of sinc(Qrmn) terms

can be optimized by the use of Fourier methods. Secondly, the

speed of calculation of the bin occupancies of interatomic

distance histograms can be improved by exploiting the

symmetry of the set of Patterson vectors of a crystal.

The implementation of these improvements forms the basis

of this article. In x2, the FFT method is defined, with NaCl

used as a model system, although the principles are valid for

all crystalline systems. In x3, the space symmetrical conse-

quences of the fundamental lattice vector–Patterson vector

splitting proposed in the earlier article (Thomas, 2010) are

drawn, by referring to the structures of �- and �-quartz.2

Again, the principles are of global validity for perfectly crys-

talline systems. There are three parts that deviate from the

mainstream: x4, x2.6, x2.7. The material in x4 is a solution to a

problem thrown up in the earlier article, in which random-

number generators were found to generate noisy diffraction

patterns for disordered kaolinite. In x2.6 and x2.7, some

consequences of the new FFT method are explored analyti-

cally, these being relevant for future work.

2. Definition of the Fourier transform method

2.1. The structure of sodium chloride and the identification
of equivalent sets of Patterson vectors

Sodium chloride is ideally suited as a model system for

defining the Fourier transform (FT) method, since the high

symmetry of its structure allows a concise handling of the key

points. By taking the structure of Walker et al. (2004) as a

basis, for which the space group is Fm3m and a is equal to

5.6401 Å, a set of 14 independent Patterson vectors can be

generated, as listed in Table 1. These comprise four different

sets, within which the Patterson vectors are of equal length.

The full set of vectors can be generated by applying the

inversion operation to the listed coordinates.

2.2. The Fourier transform of a slit function and its relevance
to the DSE

Although Hall & Monot (1991) and Cervellino et al. (2006)

utilized odd functions for Fourier transformation in their

work, the connection between the DSE and Fourier transform

theory can also be made by considering the standard result for

the FT of a rectangular slit. This arises frequently in the theory

of Fraunhofer diffraction (see, for example, Lipson & Lipson,

1981), and leads to an even function.

Proceeding from the definition of an FT [equation (3)], the

integral in equation (4), in which the function to be trans-

formed corresponds to a rectangular slit of transmittance T

and width 2R, results in a sinc(QR) function multiplied by the

factor 2RT:

research papers

492 Noel William Thomas � A Fourier transform method for powder diffraction Acta Cryst. (2011). A67, 491–506

Table 1
Independent Patterson vectors in sodium chloride.

The entry in column ‘P’ gives the number of times the vector contributes to the
complete set of Patterson vectors, of which there are 64 in all.

x y z Length (Å) P Identity

Set 1 Fm3m 4a (1)
1 0 0 0 0 8 Na� � �Na, Cl� � �Cl
Set 2 Fm3m 4b (1)
2 1

2 0 0 2.820 8 Na� � �Cl
3 0 1

2 0 2.820 8 Na� � �Cl
4 0 0 1

2 2.820 8 Na� � �Cl
Set 3 Fm3m 4a (2)
5 0 1

2
1
2 3.988 4 Na� � �Na, Cl� � �Cl

6 1
2 0 1

2 3.988 4 Na� � �Na, Cl� � �Cl
7 1

2
1
2 0 3.988 4 Na� � �Na, Cl� � �Cl

8 0 � 1
2

1
2 3.988 4 Na� � �Na, Cl� � �Cl

9 � 1
2 0 1

2 3.988 4 Na� � �Na, Cl� � �Cl
10 � 1

2
1
2 0 3.988 4 Na� � �Na, Cl� � �Cl

Set 4 Fm3m 4b (2)
11 1

2
1
2

1
2 4.884 2 Na� � �Cl

12 � 1
2

1
2

1
2 4.884 2 Na� � �Cl

13 1
2 � 1

2
1
2 4.884 2 Na� � �Cl

14 � 1
2 � 1

2
1
2 4.884 2 Na� � �Cl

2 Since the methods of x3 apply to the first stage of the DSE calculation
(sampling histogram), and the methods of x2 to the second stage (sinc sum/
Fourier transform), they could be read in reverse order.



FðQÞ ¼

Z1
�1

f ðrÞ expð�iQrÞ dr ð3Þ

F
slit
ðQÞ ¼

ZR

�R

T expð�iQrÞ dr ¼ 2RT
sin QR

QR
: ð4Þ

A comparison of equations (1) and (4) leads to the conclusion

that a single interaction between a pair of atoms of length R is

mathematically equivalent to a single, simple rectangular slit

in Fraunhofer diffraction (Fig. 1). A pairwise interaction of

length R = rmn is equivalent to a slit of width 2rmn and trans-

mittance T = fmfn/2rmn.

Owing to the linearity of the FTand the DSE it is possible to

transform many different slits (or, equivalently, pairwise

atomic interactions) simultaneously. The natural choice is to

transform the pairwise interactions resulting from all the

lattice vectors arising in the crystal with each set of Patterson

vectors separately. This is because each set of Patterson

vectors is, in general, associated with different products of

scattering factors, fmfn. In addition, the Q dependence of

scattering factors dictates that values of one are assumed for

fm and fn prior to transformation, such that each interaction of

length rmn corresponds to an elementary slit of transmittance

1/(2rmn). A correction for the real fm,fn values and their Q

dependence is carried out on the Fourier transform, F(Q).

Thus, in the case of NaCl, four separate Fourier transforms are

carried out, one per set of Patterson vectors in Table 1.

2.3. The equivalence of pair distance histograms and
compound diffracting slits

Since a pair distance histogram represents a collection of

pair interactions with different frequencies of occurrence, it

can be recast into an equivalent function that is obtained by a

summation of rectangular functions corresponding to simple

diffracting slits.3 By taking unitary values of the scattering

factors fm and fn, each single interaction in the pair distance

histogram of length R may be taken to correspond to a simple

diffracting slit of height 1/2R. The generation of an equivalent

slit-based function from an example pair distance histogram is

shown in Fig. 2.

The name ‘compound diffraction slit’ may be chosen to

represent this transmittance function (Fig. 3b), which, like the

elementary slit of Fig. 2(a), is even. It may be visualized as a

wide slit with variable transmittance, T. It is seen how the 1/2R

scaling of the heights of the elementary contributions leads to

variable step heights, with the largest step arising from the

elementary slit with bin number 200 and the smallest step for

the slit with bin number 2000. In realistic pair distance histo-

grams, the step heights are also scaled by the bin occupancies.

Since the FT of such a transmittance function will consist of a

sum of sinc(Qr) terms, i.e.
P

i½sinðQ riÞ=Q ri�, the recasting of

histogram information in the form of Fig. 3(b) leads to a

computationally efficient method of carrying out the Debye

sum [equation (1)].

This procedure may be demonstrated for a real system by

taking a small crystallite of sodium chloride of dimensions 20

� 20 � 20 nm, this giving rise to 35 � 35 � 35 = 42875 unit

cells in total. Four compound diffracting slit functions are

Acta Cryst. (2011). A67, 491–506 Noel William Thomas � A Fourier transform method for powder diffraction 493

research papers

Figure 1
(a) A simple diffracting slit of width 2R and transmittance T. (b) The FT
of this slit.

Figure 2
(a) A fictitious, unrealistic pair distance histogram consisting of equally
spaced occupied bins of occupancy 1.0, which are numbered 1 to 10. (b)
Representation of this information as a compound diffracting slit of
transmittance T. The regions 1 to 10, which are separated by dashed lines,
correspond to the contributions of bins 1 to 10 in (a) to the resulting
monotonically decreasing function.

Figure 3
(a) Transmittance functions for Patterson vector sets 1 to 4 of a NaCl
crystal of dimensions (20 nm)3. [Scaling per Patterson vector according to
equation (2), but with factor NucVuc omitted.] (b) Fine structure of curves
in (a) for interaction lengths of up to 12 Å. (Solid line: Patterson set 1,
followed by sets 2 to 4 in order of decreasing dash length.)

3 In the earlier article (Thomas, 2010), the term ‘pair distribution function’
(p.d.f.) was used instead of ‘pair distance histogram’. The notation adopted
here is more in keeping with accepted practice (see, for example, Hall &
Monot, 1991). The term ‘p.d.f.’, represented as G(r), is more commonly used to
describe a function that is derived by inverse Fourier transformation of a total
scattering structure function, S(Q), which is derived from diffraction data. For
the purposes of calculating G(r) from a known structural model, atomic
scattering factors are taken into account as well as pair distances (see, for
example, Farrow et al., 2007).



obtained, one for each set of Patterson vectors in Table 1 (Fig.

3). Since these functions are always even, it is only necessary

to consider positive values of interaction distance r explicitly.

Whereas the coarse structure of all four curves in Fig. 3(a) is

smooth and similar, the fine structure arising from the four

different sets of Patterson vectors shows considerable varia-

tion (Fig. 3b). And whereas Cervellino et al. (2006) generated

continuous functions for Fourier transformation through the

introduction of Gaussian broadening functions, the transmit-

tance functions derived here decrease monotonically with r,

with discontinuous steps at the interatomic distances.4

2.4. Fourier transforms of the four compound diffracting slits
arising for NaCl

Fourier transforms of the slit transmittance functions of Fig.

3(a) are shown in Fig. 4. The routine realft specified by Press et

al. (1996) was used for these calculations. A sampling width of

0.01 Å, as in the previous work (Thomas, 2010), led to discrete

Q values of spacing 1.198 � 10�3 Å�1 for an array size of 219.

These are sufficiently closely spaced to make the use of an

interpolation function, as in the work of Hall & Monot (1991),

redundant.

Whereas Patterson set 1 just gives rise to peaks, the other

three sets give rise to both peaks and troughs at the same Q

values. Since the single vector in set 1 is equal to 000, the FT

for this set originates from vectors linking the corners of the

unit cells, i.e. from a fraction of the lattice vectors in the face-

centred lattice of NaCl. The resulting diffraction pattern for

the whole crystal structure will be a superposition of all four

patterns in Fig. 4, weighted according to the number of

Patterson vectors in each set and the appropriate atomic

scattering factors. Further, the contribution made by inter-

actions of zero length, which sets the background level, must

be included. These final steps of the calculation are described

in the following section.

2.5. Calculation of the diffraction pattern

The splitting of the Patterson vectors into equivalent sets is

necessitated by the inability of the Fourier transformation to

accommodate atomic scattering factors that are dependent on

Q, as is the case for X-rays. Thus the transforms in Fig. 4

depend merely on atomic coordinates. Atomic scattering

information is now included by multiplying the four Fourier

transforms of Fig. 4 (i = 1, 4) by the product of the two relevant

atomic scattering factors, fm and fn. This product is denoted by

fmn,i(Q) in equation (5):

IDebye
ðQÞ ¼

2

Nuc Vuc

� �
�

X
i

p
i fmn;iðQÞF

cs
i ðQÞ þ

1

2
p1 fmn;1ðQÞ

" #
:

ð5Þ

The factor 2=½Nuc Vuc� leads to units of intensity of electronic

units per atom.5 Factors pi give the number of equivalent

Patterson vectors within set i, with p1 = 8, p2 = 24, p3 = 24 and

p4 = 8 here. The second term, p
1 fmn;1ðQÞ, accommodates the

contribution to the diffracted intensity made by all Patterson

vectors of set 1 that are added to lattice vectors [nx, ny, nz] =

[0,0,0]. Since the resulting interaction lengths are zero, this

contribution (of atoms interacting with themselves, therefore

with n = m) cannot be accommodated in the compound slit

functions. Its form results from equation (1), as sinc(Qr) is

equal to one for all values of Q. The resulting diffraction

pattern is shown in Fig. 5.

It is noticed how many of the maxima observed in curve 1 of

Fig. 4 have been cancelled by negative troughs in curves 2 to 4,

whereas other maxima have become stronger. The apparent

similarity of curves 1 to 4 in Fig. 3(a) and the marked differ-

ences in their Fourier transforms in Fig. 4 lead to the

conclusion that the fine structure of curves 1 to 4, as shown in

Fig. 3(b), is responsible for the differences in the transforms.
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Figure 4
Fourier transforms Fcs

i ðQÞ (i = 1, 4) of the four curves in Fig. 3(a) (cs =
compound slit).

Figure 5
Calculated diffraction pattern for the NaCl crystallite of dimensions
(20 nm)3, as a function of Q. X-ray atomic scattering factors have been
applied, but no atomic displacement parameters.

4 As discussed in x5.1, thermal vibrations will cause these steps to become
rounded off, so that realistic transmittance functions will also be continuous.

5 The factor of 2 in the numerator arises from the convention that each
pairwise atomic interaction is counted once in deriving the pair distance
histogram (and therefore transmittance function) (Thomas, 2010). However,
the DSE demands that each interaction be counted twice.



2.6. A radius-dependent analytical expression for the Fourier
transform of a transmittance function

The representation of crystal structural information as a set

of transmittance functions, rather than as a set of pair distance

histograms, opens up analytical possibilities that arise from the

linearity of the Fourier transform. Whereas the compound slit

function for each set of Patterson vectors is effectively derived

by laying the set of pairwise interaction lengths down hori-

zontally, as shown in Fig. 2(b), the same slit function could

equally well have been assembled as a sum of pairs of vertical

slits (Fig. 6).

This approach offers more flexibility in handling the

transmittance function analytically, since its component parts

are now identified with narrow ranges of bin number, or

equivalently interaction radius. The FT of a double slit has the

analytical form derived in equation (6):

F
dsðQÞ ¼

Z�R1

�R2

T expð�iQrÞ drþ

ZR2

R1

T expð�iQrÞ dr

¼
4T

Q
cos Q

R1þR2

2

� �h i
sin q

R2�R1

2

� �h i
¼

4T

Q
cosðQRÞ sinðQ�RÞ: ð6Þ

Thus the FT of a compound slit function may equivalently be

evaluated as the sum of FdsðQÞ terms, one per contributing

double slit [equation (7)]:

F
cs
i ðQÞ ¼

XN

j¼1

F
ds
i ðQÞ

¼
4

Q

XN

j¼1

Tij cosðQRijÞ sinðQ�RijÞ: ð7Þ

Here index i takes on values from 1 to 4, corresponding to the

four sets of Patterson vectors. Index j identifies the contri-

buting double slit, and therefore applies to transmittance Tij,

slit mid-point Rij and slit half-width �Rij (Fig. 6).

2.7. Applications of equations (5) and (7)

2.7.1. Convergence of the Debye sum. According to

equation (7), Fourier transform i at value Q is given by a sum

over all double slits of the product of cosðQRijÞ and the factor

ð4T=QÞ sinðQ�RijÞ. The different behaviour of these two

factors as values Rij increase is significant. Whereas the

cosðQRijÞ factor oscillates strongly with increasing Rj for all

relevant values of Q, the second factor tends to zero at higher

R values. This is due to the fall-off of transmittance values T

towards zero at large radius (Fig. 3a). Values of sinðQ�RijÞ are

predominantly positive in the Q range of interest, since �Rij

values are generally too small to take the argument of the sine

function outside the range 0< Q�Rij <�. Thus, the decay of

the amplitude-modulating function ð4T=QÞ sinðQ�RijÞ with

increasing radius leads to a convergence of the sums repre-

sented by equation (7), as illustrated for three different

combinations of Q and i in Fig. 7.

The Q value chosen for Fig. 7(a) corresponds to a point in

the background of the diffraction pattern, whereas Q values

for Figs. 7(b) and 7(c) correspond to lattice planes {100} and

{210} of NaCl, whose reflections are systematically absent. The

rate at which the transmittance function T(r) of the compound

slit decays to zero depends on the crystallite size. The smaller

the crystal, the faster the decay, since factors jNxj=Lx, jNyj=Ly,

jNzj=Lz of equation (2) increase faster when Lx, Ly, Lz are

smaller. It is expedient for comparative purposes to define the

convergence length of a sum as the smallest value of double-

slit half-separation, R, for which all further developing sum

values lie within 0.1% of its final value (Fig. 7). Values of this

length are quoted in Table 2 for crystallites of length 20, 40 and

60 nm.

Pairwise interactions of radii longer than the applicable

convergence lengths affect the transmittance functions merely

by slightly raising their overall heights. Since the fine structure
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Figure 6
(a) A double slit of transmittance T characterized by fundamental
parameters R1 and R2 and derived parameters R and �R. (b)
Representation of a compound slit function (as in Fig. 2b) as a set of
double slits. Members of each pair of slits are denoted by the same letter.

Table 2
Convergence lengths of the sums of equation (7) for three different
crystallite sizes of NaCl, together with sum values at the Bragg condition
(Q*) for {200} reflections.

Sum values at Q values displaced by ��Q from the Bragg condition (�Q =
0.005 Å�1) are quoted as percentages of the value at the Bragg condition.

Crystal length (nm)

20 40 60

Rmax 1 (Å) 330.530 672.440 1024.115
Rmax 2 (Å) 332.175 674.075 1025.750
Rmax 3 (Å) 333.815 675.705 1027.380
Rmax 4 (Å) 332.220 677.320 1029.000
Convergence length 1 (Å) 257.445 545.080 849.670
Convergence length 2 (Å) 257.400 545.105 849.670
Convergence length 3 (Å) 257.475 545.080 849.690
Convergence length 4 (Å) 257.460 545.130 849.650

Fcs
1 ðQ

	Þ {200} 1.5330 3.5568 5.6597

Fcs
1 ðQ

	 ��QÞ {200} (%) 88.1 66.8 39.3

Fcs
1 ðQ

	 þ�QÞ {200} (%) 91.6 68.8 40.6

Fcs
2 ðQ

	Þ {200} 2.0352 4.0900 6.2392
Fcs

2 ðQ
	 ��QÞ {200} (%) 91.4 69.7 42.3

Fcs
2 ðQ

	 þ�QÞ {200} (%) 93.3 73.6 46.4

Fcs
3 ðQ

	Þ {200} 2.0108 4.0690 6.2227

Fcs
3 ðQ

	 ��QÞ {200} (%) 90.8 69.6 42.5

Fcs
3 ðQ

	 þ�QÞ {200} (%) 93.7 73.3 45.6

Fcs
4 ðQ

	Þ {200} 2.0315 4.1083 6.2491
Fcs

4 ðQ
	 ��QÞ {200} (%) 91.1 69.8 43.3

Fcs
4 ðQ

	 þ�QÞ {200} (%) 93.3 73.7 46.5



is no longer important, the approximation of a continuum

could be used for these long-radius interactions, in order to

compute this height correction. Such considerations, which are

relevant for an optimization of computational speed, are

reserved for future work.

Also quoted in Table 2 are values of the four Fourier

transforms at Q values corresponding to the Bragg condition

for {200} reflections (Q* = 2.22804 Å�1), together with trans-

form values at Q values displaced by �0.005 Å�1 from the

Bragg condition. These indicate the influence of crystallite size

on peak height and width, with peak heights observed to rise

with increasing crystal length. Conversely the relative peak

width is seen to fall with increasing crystal length, with this

fall-off slightly less for positive deviations of Q from the

maximum intensity at Q*. This conclusion is underpinned by

the values of Fcs
i ðQ

	 þ�QÞ typically being 2 or 3% larger than

those of Fcs
i ðQ

	 ��QÞ.

2.7.2. Embedding the DSE method within the reciprocal-
lattice–structure-factor approach to powder diffraction.

Since the form of equation (7) allows partial diffraction

patterns, Fcs
i ðQÞ, to be calculated with as fine a mesh of Q

values as desirable, it is ideally suited, in combination with

equation (5), for an accurate calculation of the heights and

areas of individual Bragg peaks. This is demonstrated in Table

3 for the {200} reflection, utilizing data from Table 2.

The sum of 14764.0 is then multiplied by the factor

2=½Nuc Vuc�, which is equal to 1.3934 � 10�3 Å�3 for NaCl, to

give the result 20.572 electronic units per atom. This is in

agreement with the intensity of the peak at Q = 2.22804 Å�1 in

Fig. 5.

With respect to peak areas, the DSE-based approach can be

linked with results from the reciprocal-lattice–structure-factor

approach to powder diffraction. According to this, the inten-

sity of the hkl Bragg reflection is proportional to

Lmhkl jFðhklÞj
2, with L the Lorentz–polarization factor, mhkl

the multiplicity of the reflection and the structure factor

F(hkl) defined as in equation (8):

FðhklÞ ¼
X

i

fi exp 2�i h xi þ k yi þ l zið Þ
� �	 


: ð8Þ

The Lorentz–polarization factor for Bragg powder diffraction,

ð1þ cos22�Þ=ð2sin2� cos �Þ, is made up of three components, a

polarization factor (for X-rays, but not neutrons) of

ð1þ cos2 2�Þ=2, an orientation factor 1=ðsin �Þ and the ring

factor 1=ðsin � cos �Þ. The latter two factors, which result from

the geometry of diffraction, are not relevant for the DSE

method, since the intensity scattered in a single direction is

calculated here (Guinier, 1963; Warren, 1969). Consequently

the integrated area of a Bragg-peak hkl,
R ð2�Þ2
ð2�Þ1

Ið2�Þ dð2�Þ,
such as may be compared with a DSE-derived integrated

peak area, is proportional to ½mhkl FðhklÞ
�� ��2�=ðsin2 �B cos �BÞ.

If Q is used instead of 2� as the variable of integration,

the integral
R ð2�Þ2
ð2�Þ1

Ið2�Þ dð2�Þ = 2
R Q2

Q1
IðQÞðd�=dQÞ dQ =

ð�=2�Þ
R Q2

Q1
IðQÞð1=cos �Þ dQ. This is approximately propor-

tional to ð1=cos �BÞ
R Q2

Q1
IðQÞ dQ, with the approximation made

that cos �B is representative of all values of cos � within the

range of integration. Since sin2 �B is proportional to Q	ð Þ2, the

following link between multiplicity, structure factor and inte-

grated DSE-derived reflection intensity follows:

mhkljFðhklÞj2

Q	ð Þ
2 ’ k

ZQ2

Q1

IðQÞ dQ: ð9Þ

Here k is a constant of proportionality that is undetermined.

This relationship is validated in Table 4, where the integrated

intensities for the eight Bragg maxima at Q values of up to

5 Å�1 are quoted for three different crystallite lengths.

Neutron scattering lengths have been used for this purpose,

since they are independent of Q. Factors ½mhkl FðhklÞ
�� ��2�= Q	ð Þ2

have been calculated via the structure-factor method [equa-

tion (8)], whereas integrals
R Q2

Q1
IðQÞ dQ have been calculated

via the DSE method, i.e. by applying equations (7) and (5) and

a step size in Q of 0.0001 Å�1.

Limits of integration Q1 and Q2 were

fixed in an automated computational

procedure, in which intensity values

were monitored to lower and higher

angles, respectively, proceeding from

the Bragg maxima. Both limits were

fixed either as the points at which the

intensity curve crossed the Q axis, or at

the first minima to both sides of the

Bragg peaks, whichever came first. The

24 data points in Table 4 give rise to a

constant of proportionality, k, of value

(1.430 � 0.064) � 10�4, thereby

confirming the essential correctness of
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Figure 7
Graphical demonstration of the convergence of the sums in equation (7) (a) for Q = 0.5 and i = 1; (b)
for Q = 1.11402 and i = 1; (c) for Q = 2.491025 and i = 4. The convergence length shown by a dashed
vertical line corresponds to the smallest R value for which all further values of the developing sum
lie within 0.1% of its final value.

Table 3
Calculation of the theoretical height of the {200} reflection for a crystallite
of volume (20 nm)3.

Q* = 2.22804 Å�1; X-ray scattering-factors: fNa = 8.64877; fCl = 12.69794.

I Fcs
i ðQ

	Þ m� � �n fmn,i pi

Contribution
to sum of
equation (5)

1 1.5330 1
2(Na� � �Na+Cl� � �Cl) 118.019 8 1447.39

2 2.0352 Na� � �Cl 109.822 24 5364.23
3 2.0108 1

2(Na� � �Na+Cl� � �Cl) 118.019 24 5695.50
4 2.0315 Na� � �Cl 109.822 8 1784.83
Background 0.5 1

2(Na� � �Na+Cl� � �Cl) 118.019 8 472.076
Sum 14764.0



equation (9) in linking the DSE and structure-factor methods.

It is anticipated that a more refined treatment would lead to a

smaller standard deviation in k.

2.7.3. The derivation of Bragg reflection profiles for
nanocrystallites by interpolation. Since the variation in

Bragg reflection profiles is most marked for nanocrystallites,

the DSE method can be used to good effect here. Since the

nano region is conventionally taken as encompassing particle

sizes of up to 100 nm, this corresponds to up to 177 unit-cell

lengths of NaCl. The {220} reflection was selected as an

example, and its X-ray profile calculated for cubic crystallites

of lengths 20, 40, 80, 160, 320 and 640 unit cells. Transmittance

functions were calculated computationally and their Fourier

transforms calculated analytically by means of equation (7).

Thus exact values of cosðQRijÞ and sinðQ�RijÞ were calculated

at equally spaced values of Q about the Bragg maximum at Q*

= 3.15093 Å�1. Calculations of peak heights, Imax, revealed

them to be proportional to the crystallite length, L. Results for

the reflection profiles are shown in Fig. 8, these being intrinsic,

since no account of extrinsic diffractometer-related influences

has been made (see x5.2).

The systematic development of the curves in Fig. 8 as a

function of crystallite length and deviation from the reflection

maximum, �Q, suggests that curve profiles could be gener-

ated for all crystallites within the nanocrystalline size range by

a process of interpolation. Further sets of curves for non-cubic

crystal habits could likewise be generated.

The application of equations (2), (5) and (7) allows the

rapid calculation of intrinsic reflection profiles for all nano-

crystallites on a conventional PC. For larger crystallites, the

rate-determining step is the calculation of the compound slit

functions, since Fourier transformation proceeds rapidly by

FFT methods. For this reason, it is shown in the following

section how crystallographic symmetry can be exploited in

order to expedite these calculations.

3. Symmetry-optimized calculation of compound slit
functions

In the earlier work (Thomas, 2010), the sole method of

acceleration was the splitting of the pairwise interactions into

lattice and Patterson vectors. However, use can also be made,

for this purpose, of the Patterson

space-group symmetry that is common

to both types of vectors. Whereas the

high symmetry of NaCl permits the

intuitive division of the 64 Patterson

vectors into four sets, it is necessary to

proceed more systematically for

systems of lower symmetry.

The existence of crystal symmetry,

in general, gives rise to equivalent

lattice vectors. Any two lattice vectors

may be regarded as equivalent if they

give rise to identical sets of interatomic

distances in conjunction with a given

set of Patterson vectors. In the case of

NaCl, these correspond to the 23

permutations [�u, �v, �w] coupled

with six transpositions of u, v and w

between the x, y and z axes, giving rise

to sets of up to 48 equivalent lattice

vectors. The identification of sets of
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Figure 8
DSE-derived data points (crosses) for the {220} intrinsic reflection profile of cubic crystallites of
sodium chloride (X-radiation). Crystallite length L is expressed as the number of unit cells (UC). (a)
Relative intensity as a function of inverse crystallite length and deviation �Q (0.005 � |�Q| � 0.100)
to the left-hand side of the reflection maximum. (b) As (a), but with �Q to the right-hand side of the
reflection maximum. The crosses are linked by straight lines, indicating approximate curve profiles.

Table 4
Values of ½mhkl jFðhklÞj

2
�=ðQ	Þ2 and

R Q2

Q1
IðQÞ dQ calculated for NaCl crystallites of length 20, 40, 120 nm, utilizing neutron scattering lengths.

The hki value of a reflection is constant k averaged over the three crystallites.

hkl mhkl Q* (Å�1) F(hkl) ½mhkl jFðhklÞj2�=ðQ	Þ2
R Q2

Q1
IðQÞ dQ

hki (104)
20 nm 40 nm 120 nm

111 8 1.92954 23.788 1215.9 0.08629 0.08627 0.08597 1.411
200 6 2.22804 52.828 3373.1 0.22941 0.22988 0.23136 1.465
220 12 3.15093 52.828 3373.1 0.24244 0.24102 0.24148 1.396
311 24 3.69479 23.788 999.83 0.07090 0.06587 0.06710 1.471
222 8 3.85908 52.828 1499.2 0.10552 0.10504 0.10210 1.438
400 6 4.45608 52.828 843.28 0.05956 0.05890 0.05748 1.438
331 24 4.85590 23.788 575.95 0.04500 0.04388 0.04406 1.300
420 24 4.98205 52.828 2698.5 0.17764 0.17790 0.17820 1.517



equivalent lattice vectors is expounded in the following

section.

3.1. Identification of equivalent lattice vectors

The combination of lattice vectors with Patterson vectors to

produce interaction distances is given in Fig. 9, where a

collinear vector set with four elements is shown.

For a given pair of Patterson vectors of equal length (rP = p+

= p�), a particular value of dPjj is associated with a fixed value

of dP?. Thus the two interatomic distances arising from the

pair of Patterson vectors are obtained by applying the

theorem of Pythagoras [equation (10)]:

rinteratomic ¼ ðrL � dPjjÞ
2
þ r2

P� d
2
Pjj

� �1=2
: ð10Þ

A set of equivalent lattice vectors is associated with constant

values of rL and rP, with each member of the set giving rise to

the same set of dP|| values, and therefore interatomic distances.

Calculation of the values of dP|| is dependent on crystal

symmetry, with the simplest case corresponding to cubic

symmetry [equation (11)]:

dPjj ¼
a2 uxP þ vyP þ wzP

�� ��
rL

: ð11Þ

Here u, v, w are the three integers defining the lattice vector of

length rL ¼ aðu2þ v2þw2Þ
1=2. The Patterson vector is repre-

sented as fractional coordinates [xP, yP, zP]. Equation (11)

allows sets of equivalent lattice vectors with up to 48 members

to be identified for NaCl. The identification of sets of

equivalent lattice vectors in all the other crystal systems apart

from triclinic (for which no symmetry optimization is possible)

is simplified by the existence of a unique axis. This is

demonstrated for �- and �-quartz, to which trigonal and

hexagonal symmetry apply, respectively.

3.1.1. Low and high quartz structures. The room-

temperature structure proposed by Kihara (1990) is taken for

�-quartz, to which the trigonal space group P3221 (No. 154)

applies. This has Patterson symmetry P3m1, corresponding to

space group 164. Similarly the hexagonal structure proposed

by him for left-handed �-quartz at 1078 K is taken as a basis, to

which space group P6222 (No. 180) applies. The corresponding

Patterson symmetry is P6/mmm (space group 191). A prac-

ticable approach to symmetry optimization requires that

closed paths be found through the general positions of both

space groups. By reference to International Tables for Crys-

tallography, Volume A (Hahn, 1995), it may be seen that the

12j general positions of space group 164 may be traversed by

two closed paths of length six, whereby the symmetry operator

between each step, S1, corresponds to a threefold rotation–

inversion operation:

S1 ¼

0 1 0

1 1 0

0 0 1

0
@

1
A:

Therefore, two generating vectors are required in order to

generate all general positions for �-quartz. Since the

maximum closed path length through the 24r general positions
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Table 5
Generation of the 12j and 24r positions of space groups 164 and 191 by means of symmetry operator S1 with two and four generating vectors, respectively.

The numbers in parentheses refer to the general positions as listed in International Tables for Crystallography (Hahn, 1995). SG = space group.

Key
Start of closed path (generating)
Vector 1

S1

Vector 2
S1S1

Vector 3
S1S1S1

Vector 4
S1S1S1S1

Vector 5
S1S1S1S1S1

Vector 6

SG 164 12j/SG 191 24r (1)/(1) (8)/(14) (3)/(3) (7)/(13) (2)/(2) (9)/(15)
x; y; z y; xþ y; z xþ y; x; z x; y; z y; x� y; z x� y; x; z

SG 164 12j/SG 191 24r (4)/(7) (12)/(21) (5)/(8) (10)/(19) (6)/(9) (11)/(20)
y; x; z x; x� y; z x� y; y; z y; x; z x; xþ y; z xþ y; y; z

SG 191 24r (4) (17) (6) (16) (5) (18)
x; y; z y; x� y; z x� y; x; z x; y; z y; xþ y; z xþ y; x; z

SG 191 24r (10) (24) (11) (22) (12) (23)
y; x; z x; xþ y; z xþ y; y; z y; x; z x; x� y; z x� y; y; z

Figure 9
The interatomic distances rn+, rn� (n = 1 to 4) resulting from the addition
of a pair of Patterson vectors, p+ and p�, with four collinear lattice
vectors, OA, OB, OC and OD of periodic distance rper. All eight distances
can be generated from the three parameters, rper, dPjj and dP?.



of space group 191 is also equal to six, the same symmetry

operator, S1, may be used to generate all general positions for

�-quartz, starting from four different generating vectors

(Table 5).

The Patterson vectors in both structures may accordingly be

divided into closed paths with six members, whereby succes-

sive vectors within a given closed path are related by the S1

operator (Table 6).

The information in this table allows all Patterson vectors for

�- and �-quartz to be generated. Coordinates in the columns

headed xP, yP, zP define the generating vectors, to which the

symmetry operations defined in Table 5 are applied. The two

columns on the right of Table 6 define additional lattice

translations to be applied to Patterson vectors 2 and 3 within

the closed paths. These are sometimes required, because the

Patterson vectors to be applied to calculate interatomic

distances are generated by taking a unit cell with coordinates

in the range 0 � x, y, z < 1 and evaluating the differences in x,

y, z components between pairs of atoms (Thomas, 2010). The

computational method for taking these lattice translations into

account is described in the following section.

Patterson vectors 4, 5, 6 in the closed paths are generated by

inverting resultant vectors 1, 2 and 3, respectively, in keeping

with the symmetry operations of Table 5. For example, the

coordinates of the sixth Patterson vector in set C for �-quartz,

also taking the additional lattice translation into account,

would be calculated analytically as follows:

x3

y
3

z3

0
B@

1
CA ¼

0 1 0

1 1 0

0 0 1

0
B@

1
CA

0 1 0

1 1 0

0 0 1

0
B@

1
CA
�0:5868

�0:3844

0:4522

0
B@

1
CA

þ

0

�1

�1

0
B@

1
CA ¼

0:2024

�0:4132

�0:5478

0
B@

1
CA;

thus x6 =�0.2024; y6 = 0.4132; z6 = 0.5478. The combination of

lattice and Patterson vectors is carried out such that the

correct interatomic distances result from a minimum of

computational effort. It follows from equation (10) that, for

given fixed values of rP and rL, the appropriate interatomic

distance is determined uniquely by the value of dPjj. If the

lattice vectors are grouped into sets of six by successive S1

operations, just as for the Patterson vectors in Table 5, their

common symmetry results in symmetrical matrices of dPjj

values, as illustrated in Table 7 for one of the Patterson sets of

�-quartz, set E of Table 6, in combination with two different

sets of lattice vectors, denoted sets 1 and 2.

All 12 lattice vectors, spanning both sets, are of equal

length, since the factor u2þ v2�uvð Þ is invariant. Since a

possible orthogonalization matrix for hexagonal axes is:

a �a=2 0

0 að3Þ1=2=2 0

0 0 c

0
@

1
A
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Table 6
The 72 Patterson vectors of non-zero length for �- and �-quartz, referred to space groups 164 and 191, respectively.

Interaction Set Site
Length Generating vectors Lattice translations [�nx �ny �nz]

rP (Å) xP yP zP 2 3

�-Quartz
Si� � �O A 12j(1) 1.606 �0.0565 �0.3238 0.1189 [0 1 0] [0 0 0]
Si� � �O B 12j(1) 1.606 0.3238 0.0565 0.1189 [0 0 0] [1 0 0]
Si� � �O C 12j(2) 3.523 �0.5868 �0.3844 0.4522 [0 0 0] [0 1 1]
Si� � �O D 12j(2) 3.523 0.3844 0.5868 0.4522 [1 0 1] [0 0 0]
Si� � �O E 12j(3) 4.108 0.1171 0.8541 0.2144 [1 1 1] [1 0 0]
Si� � �O F 12j(3) 4.108 �0.8541 �0.1171 0.2144 [0 1 0] [1 1 1]
O� � �O G 12j(4) 2.646 0.4409 0.1214 0.3333 [0 0 1] [0 0 0]
O� � �O H 12j(4) 2.646 �0.1214 �0.4409 0.3333 [0 0 0] [0 0 1]
O� � �O I 6i(1) 2.613 0.2673 �0.2673 0.2378 [0 1 0] [1 0 0]
O� � �O J 6i(2) 4.965 0.1459 �0.7082 0.5711 [0 1 0] [1 0 1]
O� � �O K 6i(3) 2.617 0.1736 0.5868 0.0955 [0 1 1] [1 0 0]
Si� � �Si L 6i(4) 3.058 �0.5303 �0.0606 0.3333 [0 1 0] [0 1 1]
�-Quartz
Si� � �O A 24r 1.587 �0.2922 �0.0843 0.1667 [0 1 0] [0 0 0]
Si� � �O B 24r 1.587 �0.2079 0.0843 0.1667 [0 0 0] [0 1 1]
Si� � �O C 24r 1.587 0.2922 0.0843 0.1667 [0 0 0] [1 0 0]
Si� � �O D 24r 3.873 �0.7922 �0.0843 0.1667 [0 1 0] [1 1 1]
Si� � �O E 6m(1) 4.113 0.2922 �0.4157 �0.5 [0 1 0] [1 0 0]
Si� � �O F 6m(2) 3.719 0.2922 0.5843 0.5 [0 0 0] [0 0 0]
O� � �O G 12o 3.992 0.5843 �0.2079 0.3333 [0 1 0] [1 0 1]
O� � �O H 12o 2.558 �0.2079 0.2079 0.3333 [0 1 1] [1 0 0]
O� � �O I 12n 2.616 0.0 0.3765 0.3333 [0 0 0] [0 0 1]
O� � �O J 12n 2.616 0.0 �0.3765 0.3333 [0 0 0] [0 0 1]
O� � �O K 6l 2.603 0.5843 0.1686 0.0 [0 1 0] [1 0 0]
Si� � �Si L 6i 3.090 �0.5 0.0 0.3333 [0 1 0] [0 1 1]



the length of a lattice vector [u, v, w] is given by

½a2ðu2þ v2�uvÞ þ c2 w2�
1=2. It follows that two lattice vectors

will be of equal length if they have w values of equal magni-

tude, and if the factor u2þ v2�uvð Þ is equal for both. In this

example, three different dPjj values arise twice with the first

lattice vector of both sets, thereby giving rise to six different

interatomic distances per lattice vector, according to the sign

within the factor rL � dPjj

� �
of equation (10). If the six

different interatomic distances are denoted by the symbols 
,

�, & , -(
), -(�), -(&), it is seen in the matrix in the lower part

of Table 7 how the symmetry leads to these distances being

repeated with other lattice vectors of a given set. Thus the

total set of 36 interatomic distances contains just six different

values, which may be determined from six calculations instead

of 36, this representing a sixfold increase in computational

efficiency. The geometrical symmetry underpinning Tables 5, 6

and 7 is shown in Fig. 10.

3.2. Efficient program architecture

For the six crystal systems with a unique axis, which is taken

as z here, it is expedient to sum just the xP and yP components

of the Patterson vectors with basal lattice vectors, [nx, ny, 0], so

that the resultant vectors lie within the basal planes. The z

components of the Patterson vectors, zP, are added to z-lattice

translations at a later stage. In order to maximize efficiency,

collinear basal lattice vectors are taken (as in Fig. 9), with dPjj

one of the in-plane Patterson vector components. The other

in-plane component, dP?;xy, is readily evaluated as

½r2
P;xy� d2

Pjj�
1=2 (Fig. 11a).

The method for dealing with the x and y components of

additional lattice translations [�nx �ny �nz] of Patterson

vectors (see Table 6) is shown in Fig. 11(b). For example,

Patterson vector 2 of set E of �-quartz (P2) is subjected to an

additional in-plane translation of [1 1 0], giving rise to an end-

point for the pairwise interaction with lattice vector [3 4 0] that

could alternatively have been reached from lattice vector [2 3

0] by means of vector P2 alone. In order to exploit the full

symmetry computationally, it is necessary to use Patterson

vectors P1 to P6 without additional lattice translations. Thus it

is necessary to generate the resulting pairwise distance from

lattice vector [2 3 0], and not lattice vector [3 4 0]. The diffi-
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Figure 10
The common symmetry of lattice and Patterson vectors encapsulated by
symmetry operator S1. Lattice vectors L1 to L6 correspond to the lattice
vectors in set 1 of Table 7, with Patterson vectors P1 to P6 giving rise to
the dPjj values also listed for this set. Dashed lines indicate one of the six
different interatomic distances, this being repeated six times.

Table 7
Top: Values of dPjj obtained for Patterson vector set E of �-quartz in combination with two sets of basal lattice vectors. Bottom: Symbolic representation
of the six distances dPjj that arise with each equivalent lattice vector [
, �, &, -(
), -(�), -(&)].

Set 1 Set 2

Equivalent lattice
vectors in set (1 to 6): [3 4 0], [4 1 0], [1 3 0], [3 4 0], [4 1 0], [1 3 0] [4 3 0], [3 1 0], [1 4 0], [4 3 0], [3 1 0], [1 4 0]

Number of S1

operations on
generating
Patterson vector Patterson vector

dPjj (Å)
with [3 4 0]

Sign in
equation (10)

Symbolic
representation
in matrix

dPjj (Å)
with [4 3 0]

Sign in
equation (10)

Symbolic
representation
in matrix

0 1 3.070 + 
 1.563 + 


1 2 3.675 + � 3.914 + �

2 3 0.605 + & 2.351 + &

3 4 3.070 � -(
) 1.563 � -(
)
4 5 3.675 � -(�) 3.914 � -(�)
5 6 0.605 � -(&) 2.351 � -(&)

Patterson vector 1 2 3 4 5 6

1 
 -(&) -(�) -(
) & �

2 � 
 -(&) -(�) -(
) &

3 & � 
 -(&) -(�) -(
)
4 -(
) & � 
 -(&) -(�)
5 -(�) -(
) & � 
 -(&)
6 -(&) -(�) -(
) & � 




culty remains, however, that the frequency of occurrence of

the interatomic distance is still determined by lattice vector [3

4 0], which is to be used in connection with equation (2). A

similar interpretation applies to Patterson vectors 3, 5 and 6 in

Fig. 11(b).

This difficulty can be dealt with by modifying equation (2)

to give equation (12):

N0ðnx; ny; 0Þ ¼
1

Nuc Vuc

� � 1�
nx��nx

�� ��
Lx

� �
1�

ny��ny

�� ��
Ly

� �
:

ð12Þ

Whereas formerly lattice vector [3 4 0] would have been

summed with Patterson vector 2 and an additional lattice

translation [1 1 1] applied, the lattice vector associated with

full symmetry, i.e. [2 3 0], is now entered into equation (12): nx

= 2, ny = 3, �nx = �1 and �ny = �1. Since factors j nx�� nx j

and j ny�� ny j are equal to 3 and 4, respectively, the correct

frequencies are obtained for the resulting interatomic distance

generated, without an explicit reference to [3 4 0].

The final set of interatomic distances leading to a compound

slit function is generated by combining the in-plane distances

with z components. Each in-plane distance forms the base of a

right-angled triangle of height given by [nz � (zP + �nz)]c,

whose hypotenuse gives the interatomic distance. Here c is the

lattice parameter along z and nz takes on values 0 � nz < Lz

[see equation (2)]. For �- and �-quartz, up to four sets of two-

dimensional distances and frequencies for the basal layer need

to be stored internally within the program for a given set of

Patterson vectors, depending on values of zP and �nz (see

Table 6). More generally, these z components may correspond

to �zP, �(zP + �nz,2), �(zP + �nz,3). These sets are ideally

stored as histograms of bin width equal to half the sampling

length of 0.01 Å, i.e. with bin width 0.005 Å. However, it was

found that a bin width of 0.01 Å was adequate, leading to

improvements in computational speed without deleterious

consequences for the quality of the Fourier-transformed data.

Frequencies of the three-dimensional vectors are derived from

the in-plane frequencies of equation (12) by multiplying by the

factor ð1� nz

�� ��=LzÞ for non-basal lattice vectors [see equation

(2)], with the correction factor 1
2 applied to basal lattice vectors

(Thomas, 2010).

In the case of �-quartz, nine compound slit functions were

calculated as follows: 1, for lattice vectors alone (or equiva-

lently, for Patterson vectors 000, corresponding to special

position 1a in space group 164); 2, for sets A and B; 3, for sets

C and D; 4, for sets E and F; 5, for sets G and H; 6, for set I; 7,

for set J; 8, for set K; 9, for set L (see Table 6). Therefore, nine

separate Fourier transformations were subsequently carried

out. For �-quartz the number of compound slit functions (and

Fourier transforms) to be calculated was one fewer, because

sets A, B, C and D, corresponding to special position 24r in

space group 191, are brought together.

A parallel program architecture was adopted, with nine and

eight threads for �- and �-quartz, respectively. By comparison

with the earlier code (Thomas, 2010), the adoption of Fourier

transform methods allowed a straight-through calculation

from Patterson vector set to Fourier-transformed data,

without the storage of intermediate histogram sampling data

to disk. This led to a marked improvement in computational

times (see x3.4). As for NaCl (see x2.4), a sampling length of

0.01 Å led to discrete Q values of spacing 1.198� 10�3 Å�1 for

an array size of 219. However, in order to avoid aliasing effects

in the Fourier transforms at low Q values (Press et al., 1996),

an array size of 220 was adopted to store the compound slit

functions for crystallite lengths in excess of ca 150 nm. Here

the array elements corresponding to non-existent interactions

of higher length were packed with zeroes. Similarly for crys-

tallite lengths in excess of ca 320 nm, an array size of 221 was

adopted. These array sizes led to a Q spacing of one half and

one quarter of the original value, i.e. 0.599� 10�3 and 0.300�

10�3 Å�1, respectively. The associated increase in computa-

tional time for Fourier transformation was minimal (see x3.4).

The actual exploitation of equivalence between lattice

vectors within a computer program requires care, since the

realization of an equivalence depends on the shape of the
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Figure 11
(a) Right-angled triangles for calculation of dPjj and dP?;xy values for the
set of Patterson vectors of Fig. 10 with respect to lattice vector [3 4 0].
Dashed lines: dP?;xy; solid lines: dPjj; arrows: projections of Patterson
vectors 1 to 6 in the xy plane. (b) In-plane treatment of additional lattice
translations [1 1 1], [1 0 0], [1 1 1] and [1 0 0] (shown as thin dashed lines)
connected with Patterson vectors 2, 3, 5 and 6 starting at lattice vector [3 4
0]. The four end-points can alternatively be reached from neighbouring
lattice vectors P, Q, R and S by use of Patterson vectors 2, 3, 5 and 6
without the additional translations.

Figure 12
Comparison of compound slit functions for the lattice vectors of NaCl
(curve 1 of Fig. 3a), �- and �-quartz (curves from top to bottom: �-quartz;
�-quartz; NaCl). The lengths of the crystallites are equal to 20 nm along
the three crystal axes. The nine Fourier transforms calculated for �-quartz
(crystallite length 150 nm along all three axes) are shown in Fig. 13, this
being the equivalent of Fig. 4 for NaCl, although for considerably larger
crystallites here.



crystallite. Within a given set of equivalent collinear lattice

vectors, the equivalence can only be exploited for as many

elements as are in the shortest collinear set. The contributions

from higher elements must be calculated explicitly, without

reference to equivalences, as one or more symmetrically

related partners are missing. These considerations are not

important for a cubic crystallite of sodium chloride, but would

apply as soon as the crystallite departed from cubicity. By

comparison, full symmetrical equivalence for quartz would

only be achieved for crystallites of hexagonal habit, and not

for prismatic crystallites, to which the results in the following

section apply.

3.3. Compound slit functions, Fourier transforms and
diffraction patterns obtained for a- and b-quartz

The form obtained for the compound slit functions of �- and

�-quartz is qualitatively similar to that of NaCl, as shown in

Fig. 12 for crystallites of length 20 nm. Since the height of the

maximum at R = 0 is given by the sum over all primitive lattice

vectors, r of factors 1=2jrj, as described in x2.2, the fall-off in

height from �-quartz through �-quartz

to NaCl can be understood from the

progressive increase in unit-cell volume,

with values of V1=3
uc for the three systems

equal to 4.8347, 4.9039 and 5.6401 Å,

respectively.

The marked increase in peak sharp-

ness compared to Fig. 4 for NaCl is

evident, where the associated crystallite

length was 20 nm. Conventional

diffraction patterns, whereby 2� is the

independent variable instead of Q, are

shown in Fig. 14 for �- and �-quartz with

crystallite lengths of 20 and 150 nm. Equation (5) has been

used here, with a wavelength of 1.54051 Å for Cu K�1 radia-

tion applied, in order to convert from Q to 2� (Thomas, 2010).

3.4. Indicative computational times

For the software developed in the course of the current

work, total times for full, exact calculations are reported in

Table 8 as the condition ‘Total’. The condition ‘FFT’ refers to

the Fourier transform part of the calculations, these having

been calculated by suppressing the Fourier transform and

noting the reduction in overall computational time. The PC

used was equipped with an Intel Core 2 Duo processor E8400.

The software was written to be used in conjunction with the

Intel Fortran compiler, Version 9.0, with dual explicit paral-

lelization achieved by means of the single OpenMP compiler

directive c$OMP PARALLEL DO in combination with a

dedicated program structure.

Factor f hardwareþsoftware
total indicates the overall factor of

improvement compared to the previous work (Thomas, 2010),

this being brought about by migrating from the E6850 to the

E8400 processor and by using the software described here.

The contribution made by the new software alone is expressed

by improvement factor f software
total , which was derived by running

old and new software on an E6850 processor.

Parallelization efficiencies, i.e. the extent to which multiple

threads create a direct benefit for the computation times, were

calculated to vary between 89 and 100%.6

The new algorithm has permitted an extension of the

sample lengths to 360 nm (and beyond), this being well

outside the nanocrystalline range (of up to 100 nm), with

computational times comparable to those obtained for crys-

tallites of length L between 120 and 160 nm using the former

code. Further, the L3 dependency associated with the former

code has been improved here to an Ln dependency, with n ’

2.30 for �- and ’ 2.23 for �-quartz. This is attributed to the in-

plane summation of lattice and Patterson vectors described in

x3.2. The issue of reducing computational times further is

discussed in x5.3.
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Figure 13
Fourier transforms Fcs

i ðQÞ (i = 1, 9) for the nine symmetry-equivalent sets
of Patterson vectors in �-quartz (crystallite length 150 nm). The sets are
labelled according to Wyckoff positions in space group 164, as in Table 6.

Table 8
Comparison of computational times (in s) and factors of improvement for diffraction patterns of �-
and �-quartz as a function of crystallite length.

System Condition
Crystallite length (nm)

40 80 120 160 200 240 280 320 360

�-Quartz Total 3 10 25 47 81 122 174 236 307
�-Quartz Total 3 12 30 58 95 142 199 266 347
�-Quartz FFT 1 1 2 2 3 3 3 3 3
�-Quartz FFT 1 2 2 2 3 3 3 3 4
�-Quartz f hardwareþsoftware

total 16.3 10.9 9.2 8.8 9.2
�-Quartz f software

total 8.2 6.9 6.1 6.0 6.3

6 The criterion for monitoring parallelization efficiency was as follows. 100%
efficiency is realized when two threads running in parallel achieve a total
computation time equal to one half the time taken for serial execution. 0%
efficiency is realized when the parallel execution time is equal to the serial
execution time. Efficiencies corresponding to intermediate times are
calculated by linear interpolation.



A further hidden benefit of using the FFT algorithm,

compared to the explicit sine summation used earlier

(Thomas, 2010), is its ability to supply diffraction data to much

higher Q values at no extra computational cost. This would be

relevant for X-ray synchrotron radiation or when using

laboratory diffractometers equipped with Mo or Ag anodes.

Whereas Cu K� radiation is associated with a Q value of

8.0 Å�1 at 160
 2�, Mo K� and Ag K� radiation give rise to Q

values of 17.4 and 22.1 Å�1, respectively. This use of extended

2� ranges is relevant for conventional p.d.f. work (te Nijenhuis

et al., 2009).

As the symmetry-based optimization software has not been

developed for Patterson groups other than P3m1 and

P6/mmm, it is not yet ready for distribution.

4. Compound slit functions for disordered structures

Whereas the focus until now has been on three minerals

exhibiting perfect crystal symmetry, the inherent flexibility of

the DSE in handling disorder in crystalline systems is a major

motivation for its use as a theoretical basis for powder

diffraction. As in the earlier article (Thomas, 2010), the

structure of the clay mineral kaolinite is used in order to

describe two innovations here, first the use of analytically

calculated probabilities to describe stacking faults, and

secondly the derivation of compound slit functions for disor-

dered systems.

4.1. Analytically calculated diffraction patterns for planar
disordered systems

In the earlier article (Thomas, 2010), the degree of planar

disorder in kaolinite was defined in terms of a disorder

parameter ’dis, which was allowed to vary between 0 and 1. It

was related to the probabilities of alternative shifts �y

between adjacent layers in a stack. The allowed shifts were

�y ¼ 0;�1
3, with corresponding probabilities denoted by p0,

p+ and p� [equation (13)]

p0 ¼ 1�
2 ’dis

3

pþ ¼ p� ¼
’

dis

3
: ð13Þ

The construction of a single crystallite, from which to calculate

the diffraction pattern, was handled formerly by means of a

random-number generator, with the field of the generator

between 0 and 1 divided up according to the value of ’dis. This

gave rise to satisfactory results only at the limit of ’dis = 0,

since all random numbers lead to �y shifts of zero in this case.

For non-zero values of ’dis, however, an element of arbi-

trariness was introduced by the particular random numbers

generated,7 leading to unsmooth diffraction patterns.

A better approach, which is equivalent to an averaging over

many crystallites of equal size, is to calculate the probabilities

that a given layer is either A, or B, or C analytically. The

method is shown in Fig. 15.

Probability p0 is associated with A!A, B!B or C!C

transitions between adjacent layers. Similarly probability p+ is

associated with A!B, B!C or C!A transitions, and prob-

ability p� with A!C, B!A or C!B transitions between

adjacent layers. On this basis, analytical expressions for the

probabilities of different layer positions A, B and C may be

calculated, as shown in Table 9.

The calculation of analytical probabilities may be extended

computationally to any number of atomic layers, since the

same principles apply as for these four layers. As a result, the

desired smooth gradation in the generated diffraction patterns

between complete order and complete disorder is obtained

(Fig. 16). Here the range of diffraction angles between 19 and

33
 is highlighted, within which a well known feature is the

progressive formation of a wedge shape with increasing

disorder. These results are to be compared with the noisy

diffraction patterns in Figs. 11 and 12 of the earlier article

(Thomas, 2010), which resulted from the use of a random-

number generator.

4.2. Compound slit functions for kaolinite at varying degrees
of disorder

As described earlier (Thomas, 2010), probabilities such as

those calculated in Table 9 serve as weights for the relative

contributions of three different total sets of Patterson vectors.

Absolute pairwise layer correlations A!A, B!B or C!C

require the use of an unaltered set of Patterson vectors. By
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Figure 14
Calculated diffraction patterns for �- and �-quartz with crystallite lengths
of (a) 20 and (b) 150 nm (Cu K�1 radiation; no displacement parameters
applied). Lower curves: �-quartz; upper curves: �-quartz.

Figure 15
Probability tree for a hypothetical crystallite with four atomic layers, in
which three alternative layer positions A, B and C can occur.

7 This is an example of the law of large numbers (from probability theory)
applying. Use of a random-number generator is equivalent to the rolling of a
dice, whereby the cumulative average result of 3.5 is seldom reached quickly.



comparison, absolute pairwise layer correlations A!B, B!C

or C!A require a Patterson vector set in which a translation

of �y ¼ þ1
3 has been applied to each vector. Similarly absolute

pairwise layer correlations A!C, C!B or B!A require a set

of Patterson vectors to which a translation of �y ¼ �1
3 has

been applied to each vector.

The presence of translations of this kind destroys the

Patterson symmetry of a perfectly ordered crystal. Further-

more, the triclinic symmetry of kaolinite (Bish, 1993)

precludes the use of a symmetry-optimized technique for

calculating compound slit functions. Therefore the latter were

generated from the pair distance histograms obtained with

earlier software (Thomas, 2010).

As observed for NaCl, the coarse structure of the trans-

mittance functions is indistinguishable between ordered and

disordered kaolinite, whereas considerable variation in the

fine structure is observed (Fig. 17). The latter is responsible for

the significant differences between the

diffraction patterns shown in Fig. 16.

5. Areas of future work

5.1. The accommodation of atomic
displacement parameters in compound
slit functions

Since the encoding of crystal struc-

tural information in histogram form does not offer a simple

means of incorporating atomic displacement factors (ADPs),

Debye–Waller factors were applied to the diffraction patterns

in the earlier work (Thomas, 2010). This led to the restriction

that only isotropic displacement parameters could be applied.

By comparison, the encoding of crystal structural information

in the form of compound slit functions allows isotropic and

anisotropic displacement factors to be accommodated prior to

Fourier transformation.

The principle for anisotropic ADPs may be enunciated by

considering two atoms, A and B, separated by a length R. As a

result of thermally excited atomic vibrations, this single length

is replaced by a distribution of lengths about this mean value.

A Gaussian function may be used to model this, such that the

probability of a length ðRþ�RÞ is given by

PRð�RÞ ¼ ½1=�ð2�Þ1=2
�expð��R2=2�2Þ, with � equal to the

r.m.s. displacement h�R2i
1=2. Owing to the supine encoding of

the pairwise interactions within a compound slit function, the

Gaussian manifests itself in the form of the cumulative

distribution function DRð�RÞ, this being the integralR �R

�1
PRðR

0Þ dR0, with explicit form ð1=2Þf1þ erf½�R=�ð2Þ1=2
�g

(Fig. 18a).

The inversion of the cumulative distribution function for

positive arguments of the transmittance functions may be

understood by visualizing that thermal vibrations give rise to

smaller interaction lengths, for which �R < 0. Thus the

transmittance values start to fall off from the higher values of

each step sooner. The larger interaction lengths that result

from the vibrations lead to the rounding-off of each step at

positive �R values.

The decision was taken not to develop this approach further

within this article, as the derivation of � values for pairwise
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Figure 17
Comparison of compound slit functions for 100% ordered and 100%
disordered kaolinite [lattice vectors only; crystallite size (20 nm)3]. (a)
Complete, coarse structure (overlaying of two curves); (b) fine structure
at radii up to 15 Å. Solid line: 100% ordered kaolinite; dashed line: 100%
disordered kaolinite.

Figure 16
Diffraction patterns for kaolinite generated with analytical probabilities
for 2� angles between 19 and 33
 (Cu K�1/K�2 radiation). The five curves
correspond to the following degrees of order: (a) 100%; (b) 75%; (c)
50%; (d) 25%; (e) 0%.

Table 9
Probabilities of different layer positions in terms of elementary probabilities p0, p+ and p�.

Layer
Probability of
layer position A

Probability of
layer position B

Probability of
layer position C

1 1 0 0
2 p0 p+ p�
3 p2

0 + 2 p+ p� p2
� + 2 p0 p+ p2

þ + 2 p0 p�
4 p2

0 + p2
þ + p2

� + 6 p0 p+ p� 3(p2
0 p+ + p2

þ p� + p2
� p0) 3(p2

0 p� + p2
� p+ + p2

þ p0)



interactions from isotropic and anisotropic atomic displace-

ment parameters is non-trivial. This is because the atomic

vibrations have components both parallel and perpendicular

to the pairwise interaction vectors, which must be appro-

priately combined to give the correct � values. Further, a

computationally efficient method is required. It is therefore

proposed to carry out this work in the future. The procedure

to be developed will be validated by requiring that isotropic

displacement parameters give rise to identical results by both

methods: (i) application of DRð�RÞ functions to compound slit

functions prior to Fourier transformation; (ii) application of

Debye–Waller factors to partial diffraction patterns after

Fourier transformation.

5.2. Interaction with experiment

An important insight gained from the current work is that

the calculated widths of the Bragg reflections, even for rela-

tively modest crystallite volumes of the order of (150 nm)3, are

similar to those obtained from typical X-ray diffractometers

with much larger crystallites. It follows that the experimentally

observed width of a given peak results from a convolution of

an intrinsic, DSE-calculated peak profile and an instrumental

profile I instðQÞ, which is characteristic of the X-ray optical

system/neutron beam focusing. As a result of the introduction

of Fourier transform techniques in this work, the convolution

theorem may be straightforwardly applied in combination

with an inverse Fourier transformation, in order to calculate a

multiplying function �ðRÞ for the compound slit function

[equation (14)]:

F
�1
Q Fcs

i ðQÞ
	
Iinst
ðQÞ

� �
ðRÞ ¼ Tcs

i ðRÞ

� F
�1
Q Iinst

ðQÞ
� �

ðRÞ; ð14Þ

whereby �ðRÞ ¼ F�1
Q ½I

instðQÞ�ðRÞ: Here Fcs
i ðQÞ represents the

forward Fourier transform of the transmittance function

Tcs
i ðRÞ of Patterson set i (as in Figs. 3, 12 and 17). The use of a

function �ðRÞ would mean that the compound slit functions

could be converted to a form directly applicable to the

experimental configuration prior to Fourier transformation.

This proposed method is in need of experimental verification.

A further area of dialogue with experiment concerns the

effects on peak profiles brought about by variable crystallite

habits. Since the DSE is inherently capable of accommodating

all such morphological considerations, it is anticipated that its

use will ultimately provide more flexibility than methods

based, for example, on use of the Caglioti function (Caglioti et

al., 1958).

5.3. The further reduction of computational times

It is thought that the calculation principles described in this

article, i.e. the use of fast Fourier transforms and the exploi-

tation of crystal symmetry, indicate how the exact value of the

Debye sum may be calculated most efficiently. Since x3.4 has

revealed the strong dependence of calculation time on

processor, it follows that further progress in reducing

computational times for the exact sum will require the

migration to a more powerful processor and/or the use of

parallel processors.

Nevertheless there is still potential for the use of appro-

priate time-saving approximations, this being a subject that

has only been touched upon in x2.7.1. Here it was shown that

convergence lengths may be defined when equation (7) is used

to calculate diffraction patterns. Particularly elegant would be

the capability of using convergence acceleration techniques,

such that the high-R end-values observed, for example, in Fig.

7 could be calculated merely from the oscillatory behaviour at

low R.8

It has been seen in Fig. 14(b) that a crystallite length of

150 nm for �- and �-quartz already leads to sharp diffraction

peaks. The question therefore arises as to whether an increase

in calculation time by a factor of ca 7 for a sample length of

360 nm is justifiable, given that the resulting diffraction

patterns will be so similar. Furthermore, the peak-broadening

instrumental contribution could mean that exact calculations

for high sample lengths prove to be superfluous, in particular if

the convolution approach expressed by equation (14) is

successful.

5.4. The inverse Fourier transform

It has been shown that powder diffraction is yet another

potential area of application of the one-dimensional fast

Fourier transform. By their nature Fourier transforms are two-

way. The experimental data arising from ‘real’ samples, i.e.

multiphase with a grain size distribution, could be inverse

Fourier transformed to give rise to a superposition of trans-

mittance functions. Since the coarse structure of an elemen-

tary transmittance function is characteristic of the phase from

which it is derived (as determined by the unit-cell parameters)

and the grain size (see Fig. 12), the technique of inverse

Fourier transformation of experimentally derived diffraction

patterns could well find application in quantitative phase

analysis and in the determination of particle size distributions

by X-ray diffraction. With respect to the quantitative phase

analysis of clays, the insensitivity of the coarse structure of the

transmittance functions to disorder (see Fig. 17a) may facil-

itate quantitative determination of the concentration of
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Figure 18
(a) Cumulative distribution function DRð�RÞ; (b) rounding-off of the
sharp edges of a single slit (cf. Fig. 1a); (c) schematic representation of the
rounding-off that occurs within a compound slit function (cf. Fig. 2b).

8 A further contribution to reducing computational time could also be
achieved by methods similar to those advocated by Cervellino et al. (2006).



kaolinite by powder diffraction, irrespective of the degree of

disorder.

Dr Milen Gateshki of PANalytical B.V. in Almelo is

thanked for helpful discussions.
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